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Abstract

Maxwell�s equations are cast in the form of the Schrödinger equation. The Lanczos propagation method is used in

combination with the fast Fourier pseudospectral method to solve the initial-value problem. As a result, a time-domain,

unconditionally stable, and highly efficient numerical algorithm is obtained for propagation and scattering of broad-

band electromagnetic pulses in dispersive and absorptive media. As compared to conventional finite-difference time-

domain methods, an important advantage of the proposed algorithm is a dynamical control of accuracy: Variable time

steps or variable computational costs per time step with error control are possible. The method is illustrated with

numerical simulations of extraordinary transmission and reflection in metal, dielectric, and ionic crystal gratings with

rectangular and cylindrical geometry. The effects of polaritonic excitations on transmission (reflection) properties of

ionic crystal gratings in the infra-red range are investigated in detail. In particular, it is shown that, in addition to struc-

tural (geometric) resonances, resonant polaritonic excitations can drastically change light transmission.
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1. Introduction

Recent developments in photonics and nanostructure materials [1,2] have increased interest in efficient

and accurate algorithms for numerical simulations of propagation and scattering of short (broad band)
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laser pulses in generic passive (dispersive and absorptive) media. Time-domain approaches for solving the

Maxwell�s equations might be more suitable for this purpose than frequency domain methods because the

sought-for information, e.g. the scattering matrix, can be obtained within any desired frequency range by a

single propagation. Coupled with laser ellipsometry of broad-band pulses, fast simulations of expected res-

onance patterns in the scattering amplitude appear to be an efficient tool to control quality of manufactured
photonic devices. Unconditionally stable algorithms are especially advantageous for such tasks because of

their applicability to simulate the electromagnetic wave propagation in practically all materials and target

geometries without any assessment of admissible values of the system parameters. Another attractive prop-

erty of time-domain methods is their universality. The very same algorithms can be used to calculate static

properties of the system (e.g. a band structure of photonic crystals), and to simulate the electromagnetic

pulse propagation in non-linear materials as well as in media with time-dependent properties.

The advantages of time-domain methods have been recognized for a long time in quantum mechanics

where they are extensively used in the fields of chemical reaction dynamics [3], laser–matter interactions
[4], etc. Highly efficient and accurate tools have been developed for the wave packet propagation and anal-

ysis of the results [3,5–9]. Since Maxwell�s equations can be cast in the form of the Schrödinger equation, it

is then natural to extend time-domain methods of quantum mechanics to numerical electrodynamics. Some

realizations of this idea are rooted in the path integral representation of quantum theory (the Lie–Trotter

product formula [10] or the split operator method [5,11,12]). Other methods exploit polynomial approxima-

tions of the fundamental solution of the Schödinger equation. For instance, the Chebychev time-propaga-

tion technique has been recently used to simulate the electromagnetic pulse propagation in non-absorbing

media [13,14].
Here, it is proposed to use the Lanczos [15] and Lanczos–Arnoldi [16] methods for solving linear systems

(for a review see, e.g. [17]) to obtain an unconditionally stable, time-domain solver of Maxwell�s equations
for passive media. The method enables a dynamical control of accuracy, meaning that computational costs

are constantly optimized in the course of simulations with error control. In brief, the approach can be sum-

marized as follows. Maxwell�s equations are written in the form of the Schrödinger equation which is then

solved by the Lanczos propagation scheme [18,5] (Section 2). The difference with the well studied quantum

mechanical case is that the wave function is a multi-dimensional vector field and the Hamiltonian is non-

Hermitian for absorbing media. The split operator method [5,11,12] and the Lanczos–Arnoldi method [16]
have been used to include attenuation into the Lanczos propagation scheme, while preserving its uncondi-

tional stability (Section 4). Section 3 contains examples of the Hamiltonian formalism for passive medium

models that are used in our numerical simulations.

The accuracy of the method is investigated in Section 5. In Section 6, the Lanczos propagation scheme is

applied to study the scattering of broad-band electromagnetic pulses on various gratings. In particular, a

resonant extraordinary reflection is observed for a periodic array of parallel cylinders made of non-disper-

sive dielectric. This effect is similar to the Wood anomalies [19] and related to the existence of trapped (qua-

si-stationary) electromagnetic modes supported by the grating geometry (guided wave resonances) [20].
Simulations of the scattering of broad-band pulses on metallic grating and grooves, whose dielectric prop-

erties are described by the Drude model, are performed to demonstrate that the Lanczos propagation

scheme is able to reproduce the results known in the literature and obtained by different means (by finite

differences schemes or by the scattering matrix method).

We also study a grating structure consisting of parallel ionic crystal cylinders periodically arranged in vac-

uum. From the numerical point of view, the model of the dielectric permeability of such a material is rather

representative and used in a vast number of applications. From the physical point of view, the interest in

gratings and photonic crystals made of this kind of material is due to two types of effects in interaction with
electromagnetic radiation: The structural and polaritonic ones [21,22]. We show that in the infra-red range,

the reflection and transmission properties of ionic crystal gratings change significantly in narrow frequency

ranges due to structural and polaritonic resonances. Structural resonances are associated with the existence
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of trapped modes. Polaritonic resonances appear when the incident radiation can cause polaritonic excita-

tions in the medium. From the macroscopic point of view, this occurs in the anomalous dispersion region of

the dielectric constant.
2. The Lanczos method for Maxwell�s equations

Let D and B be electric and magnetic inductions, respectively, and E and H the corresponding fields.

When no external currents and charges are present, the dynamical Maxwell�s equations read
_D ¼ c$�H; _B ¼ �c$� E. ð2:1Þ

The over-dot denotes the time derivative, and c is the speed of light in the vacuum. Eq. (2.1) have to be

supplemented by the Gauss law $ Æ D = 0 and also by $ Æ B = 0. Relations between the fields and inductions

are determined by the medium in question. We begin with the case of a non-dispersive medium. Dispersive

media are considered in Section 3. The medium response to the applied field is local in time, D = eE and
B = lH where e and l are positive, symmetric, position dependent matrices for generic non-isotropic

and non-homogeneous media. For isotropic media, e and l are scalars. Maxwell�s equations are rewritten

in the form of the Schrödinger equation
i _w ¼ Hw; w ¼
E

H

� �
; H ¼ 0 ice�1$�

�icl�1$� 0

� �
. ð2:2Þ
One can also use the electromagnetic inductions as independent variables instead of the fields. The Ham-

iltonian H must then be modified accordingly. The initial-value problem is solved by applying the evolu-

tion operator (or the fundamental solution) to the initial wave function
wðtÞ ¼ e�iHtwð0Þ. ð2:3Þ

At interfaces of different media, the boundary conditions are enforced dynamically, that is, e and l are al-

lowed to have discontinuities. This is similar to quantum mechanical systems with discontinuous potentials

(e.g. a well, a barrier, etc.). The Hamiltonian is a Hermitian operator,Hy ¼ H, with respect to the measure

scalar product
ðw1;w2Þ ¼
Z

ðD1 � E2 þ B1 �H2Þ dr �
Z

wy
1jw2 dr. ð2:4Þ
The symmetric positive matrix j is block-diagonal, with the blocks being e and l. The norm of the wave

function with respect to the scalar product (2.4) is proportional to the electromagnetic energy and is con-

served because the evolution operator is unitary.

Here, we adopt a pseudospectral approach to solving numerically our master equation (2.2). The Hilbert

space is orthogonally projected onto a finite dimensional subspace by means of a suitable basis. In our sim-

ulations, we use the Fourier basis associated with a uniform periodic spatial grid [23]. In the grid represen-
tation, the wave function w becomes a vector whose components are values of w at grid sites, and the

Hamiltonian H is a matrix. If the Hamiltonian is Hermitian, it is then convenient to have H as an explic-

itly Hermitian matrix. In the Maxwell theory, this can be achieved if, before projecting onto the grid, the

wave function and the Hamiltonian are scaled
w ! j�1=2w; H ! j�1=2Hj1=2. ð2:5Þ
In the representation (2.2), we have
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E ! e�1=2E; H ! l�1=2H; H ! 0 ice�1=2$� l�1=2

�icl�1=2$� e�1=2 0

 !
. ð2:6Þ
The scaled Hamiltonian is Hermitian with respect to the conventional scalar product in the space of square

integrable functions, and, hence, it is a Hermitian matrix, when projected onto the grid by means of the

Fourier-grid pseudospectral method.

It should be noted that, even though we use the Fourier-grid pseudospectral method in our numerical

simulations, its choice is not special for the time-propagation scheme being developed, and motivated by
its well-known virtues such as high accuracy in approximating spatial derivatives and exponential conver-

gence [24]. As a point of fact, any discretization (projection) scheme suitable to compute the action of the

Hamiltonian on the wave function in numerical simulations, e.g. finite differencing, finite elements, etc., can

be used on equal footing with pseudospectral methods. Our study is focused on approximations of the fun-

damental solution of the Schrödinger equation in (2.3), i.e., on time propagation for a given choice of a

finite-dimensional projection of H.

A direct use of (2.3) implies a diagonalization of H, which is not feasible if the matrix size is too large.

Various numerical approximations are based on the semigroup property of the evolution operator
wðt þ DtÞ ¼ e�iDtHwðtÞ. ð2:7Þ

The infinitesimal evolution operator can be approximated by a polynomial for a sufficiently small time step

Dt. The basic idea of the Lanczos propagation method is that the exact solution w(t + Dt) is projected onto

the Krylov subspace associated with the initial state w(t) and the Hamiltonian H, wðt þ DtÞ ! wðnÞðt þ DtÞ
� Pnwðt þ DtÞ 2 Kn, where Py

n ¼ Pn;P
2
n ¼ Pn, and
Kn ¼ SpanðwðtÞ;HwðtÞ; . . . ;Hn�1wðtÞÞ.

The accuracy of such an approximation is O(Dtn). The Hamiltonian is projected accordingly,

H ! HðnÞ � PnHPn. Thus,
wðt þ DtÞ � wðnÞðt þ DtÞ ¼ e�iDtHðnÞ
wðnÞðtÞ � GðnÞðDtÞwðnÞðtÞ. ð2:8Þ
The matrix GðnÞðDtÞ is called the amplification matrix. The projection is done via an orthonormal basis for

Kn which is constructed by means of the Lanczos recursion algorithm [15]. In this basis, the matrix HðnÞ is

Hermitian and tridiagonal. Typically, just a few orders are sufficient (n 6 9) so that n is much smaller than

the dimension of H and the matrix HðnÞ can easily be diagonalized. The dimension n may be set differently

at each time step, depending on the current vector w(t), and is determined by a pre-set required accuracy. In

particular, it enables to avoid excessive actions of H on the wave function. This feature leads to a dynam-
ical optimization of computational costs with error control, which is one the greatest advantages of the

Lanczos method.

A detailed discussion of the Lanczos recursion algorithm and its application to the wave packet prop-

agation can be found elsewhere [18,5]. Here, only a brief summary is given with notations used later in

the text. Let w0 = w(t), where w(t) is assumed to be normalized so that iw0i = 1. Due to the linearity of

the Schrödinger equation one can always scale w0 by a number and rescale it back after applying the infin-

itesimal evolution operator. Define:
a0 ¼ ðw0;Hw0Þ; ð2:9Þ
/1 ¼ ðH� a0Þw0; ð2:10Þ
w1 ¼ /1=k/1k. ð2:11Þ
By construction, w1 and w0 are orthonormal. For k = 2,3, . . . ,n � 1, the rest of the basis for Kn is generated

by the recursion relation:
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ak�1 ¼ ðwk�1;Hwk�1Þ; ð2:12Þ
bk�2 ¼ ðwk�2;Hwk�1Þ; ð2:13Þ
/k ¼ ðH� ak�1Þwk�1 � bk�2wk�2; ð2:14Þ
wk ¼ /k=k/kk. ð2:15Þ
By construction, the vector Hwj is a linear combination of wj� 1, wj, and wj+1. Hence, in the Lanczos basis
the matrix H

ðnÞ
ij ¼ ðwi;HwjÞ is tridiagonal. Elementary calculations show that the diagonal elements are

H
ðnÞ
jj ¼ aj ¼ �aj, the upper and lower superdiagonals are H

ðnÞ
jjþ1 ¼ H

ðnÞ
j�1j ¼ bj ¼ �bj.

Let U be a unitary transformation such that U yHðnÞU is a diagonal matrix and EðnÞ
j be the eigenvalues of

HðnÞ. The approximate solution (2.8) is obtained by expanding the wave function over the Lanczos basis

and solving the Schödinger equation for the expansion coefficients
wðnÞðt þ DtÞ ¼
Xn�1

k;j¼0

�Ujke
�iDtEðnÞ

j U j0wk �
Xn�1

k¼0

ckðDtÞwk; ð2:16Þ
where the initial condition ck(0) = dk0 has been taken into account. Since HðnÞ is Hermitian, the evolution
preserves the norm
kwðnÞðt þ DtÞk2 ¼ kwðnÞðtÞk2 ¼ kw0k
2 ¼ 1. ð2:17Þ
Recall that a time-stepping algorithm is unconditionally stable if the norm of all powers of its ampli-
fication matrix are uniformly bounded, that is, kGN

ðnÞk 6 const uniformly for all integers N > 0, Dt > 0,

and all other parameters of GðnÞ [25]. The norm of the amplification matrix is defined by

kGðnÞk ¼ supwkGðnÞwk=kwk. It follows from (2.17) that the algorithm is unconditionally stable because

kGN
ðnÞk 6 kGðnÞkN ¼ 1.

The accuracy of the algorithm can be estimated from the following observation [18]. The norm of an

orthogonal projection of the exact solution onto the orthogonal complement of Kn can be used as a measure

of accuracy of the Lanczos algorithm. By expanding the exponential in the right hand side of (2.7) into a

Taylor series, it is clear that the contribution of the term ðDtHÞnþ1wðtÞ, which has no projection onto Kn,

can only be captured by the approximate solution if the larger Krylov space Kn+2 is used in the Lanczos

algorithm, which, in turn, implies that the vector cj(Dt) acquires two additional components. Thus, the
accuracy of the Lanczos algorithm can be controlled, for example, by demanding that the absolute value

of cn� 1(Dt) is less than a specified small number �. Note that jcn� 1(Dt)j � O(Dtn� 1) as one can deduce from

(2.16), the tridiagonal structure ofHðnÞ in the Lanzcos basis, and the initial condition ck(0) = dk0. To ensure

that the norm of the projection of w(t + Dt) onto the orthogonal complement of Kn is small, we demand

that
jcn�3ðDtÞj2 þ jcn�2ðDtÞj2 þ jcn�1ðDtÞj2 6 �; ð2:18Þ
where � � 10�14 in our calculations. To satisfy (2.18), the time step Dt, or the dimension of the Krylov sub-

space n, or both can be varied to minimize computational costs. This is the aforementioned dynamical con-

trol of accuracy in the Lanczos propagation method. In our simulations, Dt has been kept fixed, while (2.18)

has been used to determine a minimal n for each time step. Some care should be taken regarding a known

drawback of the Lanczos algorithm – a possible loss of orthogonality of basis functions due to round-off
errors [15,26]. This is why in all the examples presented in this paper the time step has been adjusted so that

only low dimensional Krylov spaces, n 6 9, are invoked in contrast to the conventional use of the Lanczos

method for solving linear systems.
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3. Examples of media with attenuation

In the case of generic passive media, relations between the inductions and fields in (2.1) are no longer

local in time. However, the medium response to the applied electromagnetic field must be causal. A com-

mon way to model the causal response is to assume that the medium polarization, P = D � E, and magne-
tization M = B � H, satisfy linear differential equations in time in which a non-homogeneous term is

proportional to the applied field (for linear media). The Maxwell�s equations in passive media appear then

to be a system of (high-order) differential equations to which numerical algorithms are applied [27,28]. Any

system of high-order differential equations can be converted into a system of first-order differential equa-

tions by introducing auxiliary dynamical variables. This idea is used to convert Maxwell�s equations for

passive media into the Schrödinger equation (2.2) in which the wave function contains additional compo-

nents that describe dynamics of the medium polarization and magnetization [12].

Due to absorption the time evolution is no longer unitary. From the mathematical point of view, the
Hamiltonian acquires an imaginary part, H ¼ H0 � iV where Hy

0 ¼ H0 and Vy ¼ V. The system is

absorbing and, therefore, V must be a positive semidefinite operator, that is, for any w; ðw;VwÞ P 0.

This readily follows from the condition that the norm of a solution of (2.2) cannot increase with time.

The Lanczos method should be modified to incorporate this new feature, while retaining its key virtues

such as unconditional stability and dynamical accuracy control. Before we do so, let us illustrate the for-

mal mathematical concept of attenuation with specific examples of media later used in our numerical

simulations.

It must also be noted that an additional, artificial absorption of the wave packet is required in numerical
simulations of scattering problems in which the pulse shape is to be computed in the asymptotic region.

Indeed, when the front edge of the pulse reaches the grid boundary, it will be reflected or re-appear on

the other side of the grid, depending on the boundary conditions. To avoid an artificial interference of

the scattered pulse with itself, a layer of an absorbing medium is necessary at the grid boundary [29].

3.1. The Drude model of metals

In the Drude model, the magnetization M = 0, while the dielectric constant e is a function of the fre-
quency x given by
eðxÞ ¼ 1�
x2

p

x2 þ igx
; ð3:1Þ
where g > 0 is the attenuation constant and xp is the plasma frequency, which is set to zero in vacuum and

to some specific value in the metal (see Section 6). The corresponding medium polarization obeys the sec-

ond order differential equation
€Pþ g _P ¼ x2
pE; ð3:2Þ
subject to vanishing initial conditions, Pð0Þ ¼ _Pð0Þ ¼ 0. Define an auxiliary field Q by _P ¼ xpQ. Rewriting

the Maxwell�s equations and (3.2) in terms E, B, andQ and their first-order time derivatives, the Schröding-

er equation is obtained in which
w ¼
E

B

Q

0
B@

1
CA; H ¼

0 ic$� �ixp

�ic$� 0 0

ixp 0 �ig

0
B@

1
CA. ð3:3Þ
The Hamiltonian is Hermitian when g = 0 (no attenuation). The attenuation potential V is a diagonal

matrix, diag(0,0,g), that is positive semidefinite since g > 0.
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3.2. Ionic crystal materials

Dielectric properties of ionic crystal materials are well described by a dielectric constant given as a func-

tion of the frequency x by
eðxÞ ¼ e1 þ ðe0 � e1Þx2
T

x2
T � x2 � igx

; ð3:4Þ
where e1,0 are constants, xT is the resonant frequency, and g is the attenuation. Let P be the dispersive part

of the total polarization vector of the medium. Then D = e1E + P. By using the Fourier transform, it is

straightforward to deduce that P satisfies the second-order differential equation
€Pþ g _Pþ x2
TP ¼ e1x

2
pE; ð3:5Þ
where x2
p ¼ ðe0 � e1Þx2

T=e1 if e0 � e1 is positive, otherwise, x2
p ! �x2

p in (3.5). Eq. (3.5) must be solved

with zero initial conditions, P ¼ _P ¼ 0 at t = 0.
Define a set of auxiliary fields Q1,2 by P ¼ ffiffiffiffiffiffi

e1
p

xpQ1=xT and _Q1 ¼ xTQ2. For non-magnetic media

(l = 1), Maxwell�s equations and (3.5) can be written as a Schrödinger equation in which the wave function

and the Hamiltonian are defined by
w ¼

e1=21 E

B

Q1

Q2

0
BBB@

1
CCCA; H ¼

0 ice�1=2
1 $� 0 �ixp

�ic$� e�1=2
1 0 0 0

0 0 0 ixT

ixp 0 �ixT �ig

0
BBB@

1
CCCA. ð3:6Þ
Here e1,0 are set to one in the vacuum and to some specific values in the medium in question (see Section 6).

The squared norm of the wave function, kwk2 ¼
R
drwyw, is proportional to the total electromagnetic en-

ergy of the wave packet [12,30]. When attenuation is not present, g = 0, the Hamiltonian is Hermitian,

Hy ¼ H, and the norm (or energy) is conserved. As seen from (3.6) the attenuation potential is a diagonal

matrix: V ¼ diagð0; 0; 0; gÞ.

3.3. Absorbing boundary conditions

For the additional absorber at the grid boundaries, a layer of a conducting medium has been used with a

position-dependent conductivity r. The induced current in a conducting medium has the form J = rE. If
V11 is the element in the upper left corner of the attenuation potential V, then it has to be changed to

V11 � 4pr to include the absorbing layer. The function r P 0 is constructed according to the frequency

band of the initial pulse (for details see [12,30] and references therein).
4. Including attenuation

4.1. The split method

A simple way to include the attenuation of the wave packet amplitude into the Lanczos method, while

maintaining the unconditional stability of the algorithm, is to use the split operator method. The exact time

evolution (2.7) is approximated by means of the Lie–Trotter formula
wðt þ DtÞ ¼ e�DtV=2e�iDtH0e�DtV=2wðtÞ þOðDt3Þ � GLSðDtÞwðtÞ þOðDt3Þ. ð4:1Þ
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The action of the exponential of H0 is computed by the Lanczos method as before. The attenuation po-

tential V typically does not involve spatial derivatives and, hence, the action of its exponential on a wave

function is far less expensive than that for H0. The norm of any power of the amplification matrix GLSðDtÞ
still remains uniformly bounded by unity because ke�DtV=2k 6 1 for DtP 0. Hence, unconditional stability

is preserved. A disadvantage is, however, that the dynamical accuracy control is lost because the accuracy is
now mostly determined by the split (4.1) rather than by the dimension of the Krylov space associated with

H0. This would not be a significant shortcoming of the scheme if the attenuation was only used to enforce

absorbing boundary conditions because the accuracy of the numerical solution in the spatial region occu-

pied by the absorbing layer is not important anyway (see Section 5.2).

4.2. The Lanczos–Arnoldi method

The dynamical accuracy control in systems with attenuation can be restored in several ways. One math-
ematically sound possibility is to use the dually orthonormal Lanczos basis in which HðnÞ retains the tridi-

agonal complex symmetric structure [15]. In the special case of a complex symmetric H, the use of the dual

Krylov space can be avoided. There is an orthogonal Lanczos basis for Kn in which HðnÞ is also complex

symmetric tridiagonal, but orthogonality is now understood with respect to a new scalar product (without

complex conjugation of vectors) [17]. However, in both cases, the ‘‘projector’’ Pn is no longer Hermitian.

This has an unpleasant consequence. One can show that, while the accuracy remains of the order O(Dtn),
unconditional stability is typically lost. The algorithm is only conditionally stable. A more detailed study of

such schemes will be given elsewhere.
It is possible to achieve unconditional stability and dynamical control of accuracy at the same time, but

at the price of having an algorithm that is slightly less ‘‘memory friendly’’. It is based on the Arnoldi process

for non-Hermitian matrices. Let us construct an orthonormal basis for Kn applying, for example, the

Gramm–Schmidt process to linearly independent Krylov vectors. The projector Pn constructed in this basis

is Hermitian. The difference with the conventional Lanczos scheme for Hermitian Hamiltonians is that the

matrix HðnÞ has a Hessenberg form, that is, it is upper-triangular with one extra non-zero lower superdi-

agonal [16,17]. Compared to the costs of computing consecutive actions ofH on the wave function, a direct

diagonalization of HðnÞ is still inexpensive for small n.
The recurrence relation is similar to (2.14). Put /0 = w(t) and w0 = /0/i/0i. Compute H

ðnÞ
00 ¼ ðw0;Hw0Þ.

For j = 1,2, . . . ,n � 1, compute:
/j ¼ Hwj�1 �
Xj�1

k¼0

H
ðnÞ
kj�1wk; ð4:2Þ

wj ¼ /j=k/jk; H
ðnÞ
jj�1 ¼ ðwj;Hwj�1Þ; ð4:3Þ
and, for k = 0,1, . . . ,j, compute
H
ðnÞ
kj ¼ ðwk;HwjÞ. ð4:4Þ
By construction, (wj,wk) = djk. A one-time-step evolution is again given by (2.16). Observe the key difference

with the Lanczos scheme. In numerical simulations, the Lanczos recurrence relation (2.14) requires to store

only two preceding basis vectors in the operational memory, while in (4.2) all the preceding basis vectors

must be kept in the operational memory. Fortunately, in practice the dimension of the Krylov space is not

large at any time step so that the increased demand for memory usage does not appear as a significant
problem.

Now we prove that the algorithm is unconditionally stable. Observe that before the projection onto the

Krylov space, the evolution operator is uniformly bounded k expð�iDtHÞk 6 1 for Dt > 0 and all param-
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eters of H for which the attenuation operator V remains positive semidefinite. The amplification matrix

has the form GðnÞðDtÞ ¼ expð�iDtHðnÞÞ. Thanks to the Hermiticity of Pn, it is sufficient to show that

VðnÞ ¼ PnVPn is positive semidefinite because the latter implies that kGN
ðnÞðDtÞk 6 kGðnÞðDtÞkN 6 1 uni-

formly for all integers N > 0, Dt > 0, and all parameters of H. For any w, the following chain of equalities

holds, ðw;VðnÞwÞ ¼ ðw;PnVPnwÞ ¼ ðwðnÞ;VwðnÞÞ P 0. In the first equality, the definition of VðnÞ has been
used, in the second one, the Hermiticity of the projection operator has been invoked, and the final inequal-

ity is valid since V is positive semidefinite. The proof is completed.

The same condition (2.18) can be used for the dynamical accuracy control. Recall that this condition is

based on the fact that cn� 1(Dt) � O(Dtn� 1) because cn� 1 determines the weight of Hn�1wðtÞ in the Taylor

expansion of w(n)(t + Dt). In the case of a non-Hermitian H, the time evolution of the vector c is generated

by a Hessenberg matrix HðnÞ. By examining the Taylor expansion of the exponential in expð�iDtHðnÞÞcð0Þ,
it is easy to convince oneself that cn� 1(Dt) � O(Dtn� 1) remains valid. Indeed, thanks to the Hessenberg

form of the matrix HðnÞ, that is, HðnÞ has only zeros below the lower superdiagonal, the action of
½HðnÞ�k on the initial vector cj(0) = dj0 produces a vector with the first k + 1 non-zero entries. Hence, only

for k = n � 1 a non-zero bottom entry appears in the vector c.
5. Time-propagation accuracy analysis

5.1. Free space propagation. Phase and amplitude errors

To illustrate the efficiency of the Lanczos time-propagation method, we compare it with a widely

adopted Second Order Finite Difference (SOD, or leapfrog) propagation method [5,28,31], using the sim-

plest example of the electromagnetic pulse propagation in vacuum. The action of the Hamiltonian on wave

functions in the Lanczos and leapfrog methods are done in the same way, that is, by the fast Fourier

pseudospectral method on the same grid.

Consider a Gaussian wave packet linearly polarized along the y-axis and propagating along the z-axis.

The amplitude of the fields at the initial time t = 0 is given by
EyðzÞ ¼ e�z2=D2

eik0z; HxðzÞ ¼ �EyðzÞ; ð5:1Þ

where k0 = 5.5/D and D determines the width of the wave packet. The carrier wave length k = 2p/k0 so that

D = 0.875k. We take D = 1.75 lm, or k = 2 lm. The step of the grid is Dz = 0.1D. An exact solution directly

follows from (5.1) Ey(z,t) = Ey(z � ct). The wave packet propagates in the direction of positive z. With our

settings the pulse duration is about 25 fs.
Numerical solutions are obtained by the Lanczos and leapfrog algorithms for the Schrödinger equation

(2.2) in which e = l = 1. Recall that the leapfrog propagation scheme is based on the third-order finite dif-

ference approximation of the time derivative
wðt þ DtÞ ¼ wðt � DtÞ � 2iDtHwðtÞ. ð5:2Þ

The scheme is conditionally stable, and the time step must be chosen accordingly, DtkHk 6 1 for Hy ¼ H
(for the non-Hermitian case see the discussion in [30]). The simulated electric field is recorded by a detector
placed at z = zdet = 18D. Its phase and amplitude are compared with those of the exact solution. For a sig-

nal E(t) = E0(t)e
iu(t), where E0(t) = jE(t)j, the phase and amplitude errors are defined, respectively, by
dP ¼ juexact � uapproxj
uexact

; dA ¼ jEexact
0 � Eapprox

0 j
Eexact
0

. ð5:3Þ
The errors dP,A are plotted, respectively, in Figs. 1 and 2 as functions of S = (zdet � ct)/D, the position of the

pulse center relative to the detector measured in units of D. The results are shown for jSj 6 2.5, where the
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Fig. 1. Phase errors for the propagation of an electromagnetic Gaussian pulse in vacuum. Results are presented as a function of the

position of the pulse center relative to the detector, S, measured in units of the pulse width D. Dashed and solid curves correspond,

respectively, to the leapfrog and Lanczos propagation methods. Different colors represent computational costs of simulations

measured as the total number of actions of the Hamiltonian on the wave function for fixed propagation time. Further details are given

in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Amplitude errors for the propagation of an electromagnetic Gaussian pulse in vacuum. Results are presented as a function of

the position of the pulse center relative to the detector, S, measured in units of the pulse width D. Dashed and solid curves correspond,

respectively, to the leapfrog and Lanczos propagation methods. Different colors represent computational costs of simulations

measured as the total number of actions of the Hamiltonian on the wave function for fixed propagation time. Further details are given

in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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amplitude of the signal on the detector is sufficient. Time sampling points at the detector are chosen so that

uexact(t) does not vanish. Dashed and solid lines correspond to the leapfrog and Lanczos methods, respec-

tively, for various settings of the time step.

The time step for the black dashed line is a reference time step, Dt0 � 0.01 fs. If NH is the number of

elementary operations required to compute the action of the Hamiltonian on a wave function, then the total
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number of operations reads N = sNHNt, where s is the number of actions of the Hamiltonian per a time

step, Nt = t/Dt is the total number of time steps. For the leapfrog method, s = 1 for all time steps. In the

Lanczos method, s = n � 1, with n being the dimension of the Krylov space. Despite the fact that the dy-

namic control of accuracy has been activated, de facto n does not vary in the course of the simulations in

vacuum.
Let N = N0 for the black dashed curve. The red dashed curve is obtained by reducing the time step,

Dt = Dt0/2, and, hence, the total number of operations increases accordingly, N = 2N0. In the Lanczos

method, the black solid curve corresponds to Dt = 10Dt0 and s = 7, the blue solid curve to Dt = 5Dt0 and
s = 7, and the red one to Dt = 2.5Dt0 and s = 6. The total number of operations is, respectively,

N = 0.7N0, N = 1.4N0, and N = 2.4N0.

In summary, it is readily seen that at roughly the same number of operations, the Lanczos algorithm

has phase and amplitude errors that are less than those in the leapfrog method by several orders of

magnitude.

5.2. Comparison of different time-propagation schemes

There are, of course, algorithms that would be more efficient than the Lanczos propagation method in

free space. For instance, the split propagation method [12] essentially reproduces an exact solution and is

also unconditionally stable. However, the split method would not be applicable when the Hamiltonian in-

volves products of operators that depend on spatial derivatives and positions. In general, the accuracy of a

time stepping algorithm can be estimated by the deviation of the exact infinitesimal evolution operator from
the amplification matrix in the operator norm
dðDtÞ � ke�iDtH � GðDtÞk. ð5:4Þ

Here, we discuss only the time-propagation accuracy, assuming that a required level of accuracy in the spa-

tial dependence of the Hamiltonian has been achieved by a suitable method. In particular, accuracy and

convergence of the Fourier-grid pseudospectral method used in our simulations can be found in [24]. In this
sense, the exponential in (5.4) represents the exact evolution operator.

Now we compare the leapfrog (LF), Lanczos with the split (LS), and Lanczos–Arnoldi (LA) time-prop-

agation schemes. There is an upper bound on error of Krylov subspace approximations to the matrix expo-

nential operator [32], which, applied to our case of the Arnoldi process, yields
dLAðDtÞ 6 2 DtkHkð Þn=n! � 2 Dtckmaxð Þn=n!; ð5:5Þ

where kmax is the maximal wave vector supported by the spatial grid resolution. The bound can be signif-

icantly improved [33], by a factor 2�n expð�pDtkHkÞ with p > 0 for n P DtkHk. This bound shows that the

LA propagation scheme is superior to the LF method in both respects, the accuracy and convergence.

While the LF scheme is only stable if Dtckmax 6 1, the LA scheme enables larger time steps within the same
required error tolerance. For some special non-Hermitian Hamiltonians, there is rapid error decay even for

n � DtkHk [33].

The accuracy of the LF scheme, dLF � ðkHkDtÞ3 � ðckmaxDtÞ3, can be improved by, for example, taking

into account the next term of the Taylor expansion of w (t ± Dt) in powers of Dt in (5.2) [25,34] (which is

similar to the so-called Lax–Wernoff method)
�2iDtHw ! �2iDtHð1� Dt2H2=3Þw.

The method is still conditionally stable where the LF stability condition, DtkHk 6 1, changes accordingly

to DtkHð1� Dt2H2=3Þk 6 1. Even though s has tripled, the new stability condition allows one to increase

the time step by the factor of 2.1. Therefore, the total number of operations increases only slightly. The

accuracy of the scheme will be of order ðkHkDtÞ5, which is still not as high as in the LA method.
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For not so large problems, the LS method might be more efficient than the LA method. Let N0 be the

total number grid points. If the Fourier pseudospectral method is used to compute the action of the Ham-

iltonian on wave function, then the number of operations required is NH=N0 log2N0 (based on the use of

the fast Fourier algorithm). There are s = n � 1 actions of the Hamiltonian per time step in either algo-

rithm. On the other hand, the number of operations required to compute matrix elements H
ðnÞ
jk in the Lanc-

zos and Arnoldi processes scales as (2n � 1)N0 and (n(n + 1)/2 + n � 1)N0, respectively. For large N0 and

small n, the costs of one time step in either algorithm is dominated by sNH = (n � 1)N0 log2N0. For not

so large N0, that is, when log2N0 � n, computingH
ðnÞ
jk and the sums in the recurrence relation (4.2) becomes

just as expensive as the actions of the Hamiltonian, while this is not so in the LS method because H
ðnÞ
0 has a

tridiagonal symmetric structure in the Lanczos basis.

Even though the accuracy of the LS method is of order Dt3, it is actually higher than the LF scheme

accuracy. For some particular systems, the LS method might even be just as accurate as the LA scheme

at the same or lower computational costs. This can be understood from the following observation. By mak-
ing use of the Campbell–Hausdorf formula, we infer for the amplification matrix in the LS algorithm that
e�iDtH � GLSðDtÞ ¼ � 1
24

½H0; ½H0;V�� � 2i½V; ½V;H0��ð ÞDt3 þOðDt4Þ. ð5:6Þ
Taking, for example, the ionic crystal Hamiltonian (3.6), the commutators are straightforward to compute.

Then the error introduced by the split is mostly determined by k½H0; ½H0;V��kDt3 � ckmaxgXDt3 and by

k½V; ½V;H0��kDt3 � gX2Dt3, where X stands for max(xp, xT). Since ckmax � X and ckmax � g, the accu-
racy of the LS method appears to be higher than that of the LF scheme, dLS 	 dLF. The error of computing

expð�iDtH0Þ in the LS method is given again by (5.5) which is typically small compared to the error of the

split approximation itself.

Depending on the parameters of the Hamiltonian, it is conceivable to get dLS � dLA by reducing the time

step in the LS method. Since the LA method could require more elementary operations per one time step,

that is, when log2N0 � n, the LS method might happen to be more efficient, or, at least, be just as good as

the LA method, that is, it would have the same accuracy at the lower or same computational costs. An

absorbing layer is a good example of this.
6. Applications to nanostructured periodic materials

In this section, the Lanczos propagation scheme is applied to scattering of broad-band wave packets on

nanostructured periodic materials such as gratings and grooves. We are particularly interested in transmis-

sion (reflection) properties, which are currently subjects of intense research [2,35–37]. The results obtained

here are compared with those available in the literature. The time-dependent approach illuminates the sig-
nificance of trapped modes or resonances for extraordinary transmittance and reflectance of periodic struc-

tures. The longer a trapped mode lives, the more narrow the resonance which occurs in the reflection and/or

transmission coefficient.

All systems considered here have a translation symmetry along one of the Euclidean axes, chosen to be

the y-axis. The structures are periodic along the x-axis with period Dg, while the z-direction is transverse to

the structure. The initial-wave packet is Gaussian and propagates along the z-axis (see, e.g. (5.1)). Its spec-

trum is broad enough to cover the frequency range of interest. The frequency resolved transmission and

reflection coefficients are obtained via the time-to-frequency Fourier transform of the signal on ‘‘virtual
detectors’’ placed at some distance in front and behind the periodic structure [38]. The zero diffraction mode

is studied here for wavelengths k P Dg so that reflected and transmitted beams propagate along the z-axis.

Similar to our previous work [30], we use a change of variables in both x (x = f1(n)) and z (z = f2(f)) coor-
dinates to enhance the sampling efficiency in the vicinity of medium interfaces so that the boundary
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conditions are accurately reproduced by the Fourier-grid pseudospectral method. A typical size of the mesh

corresponds to �15Dg 6 z 6 15Dg, and �0.5Dg 6 x 6 0.5Dg with, respectively, 512 and 128 mesh points.

Note that, because of the variable change, a uniform mesh in the auxiliary coordinates (n,f) corresponds
to a non-uniform mesh in the physical (x,z) space.

6.1. Array of dielectric cylinders

The significance of trapped modes is first illustrated with a periodic array of non-dispersive dielectric cyl-

inders, a system which has not received as much attention as metal or dielectric gratings with rectangular

geometry. Consider an array of parallel, periodically positioned, dielectric cylinders in vacuum oriented

along the y-axis. The packing density R/Dg = 0.1, where R is the radius of cylinders and Dg = 1.75 lm is

the grating period. The incident wave packet is linearly polarized. The electric field is oriented along the

y-axis, i.e., parallel to the cylinders (the so-called TE polarization). The Hamiltonian for the Lanczos
scheme has the form (2.2) where l = 1.

In Fig. 3, the reflection coefficient R is shown as a function of the wave length expressed in units of Dg.

In the Schrödinger formulation of Maxwell�s theory, the squared norm of the wave function is proportional

to the total electromagnetic energy. Hence, for a lossless medium the transmission T can simply be ob-

tained from energy conservation: TþR ¼ 1, since the Lanczos propagation method preserves the norm.

The solid-blue and dashed-red curves correspond, respectively, to e = 2 and e = 4. As one can see the array

becomes a perfect reflector within a fairly narrow wavelength range centered at the resonant wavelength,

which is slightly larger than the period Dg. Similar results have been obtained for dielectric grating struc-
tures with rectangular geometry. The resonant pattern is associated with the so-called Wood anomalies [19],

and can be explained by the existence of trapped modes or guided wave resonances [20,30]. The widths of

the resonances in the reflection (transmission) coefficient are determined by the lifetime of a corresponding

quasi-stationary trapped mode which is a standing wave along the x-axis and is excited by the incoming

wave.
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Fig. 3. Calculated zero-order reflection coefficient for a periodic array of dielectric cylinders in vacuum described in the text. Results

are presented as a function of the wavelength of the incident radiation measured in units of the period Dg. The solid-blue and dashed-

red curves correspond, respectively, to the array of cylinders with dielectric constants e = 2 and e = 4. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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The existence of trapped modes can easily be inferred from the temporal evolution of the electromagnetic

field. Fig. 4 shows the transmitted electric field as a function of time measured by a detector placed behind

the layer of dielectric cylinders. The main transmitted pulse is clearly visible. It has a significant amplitude

and a duration about 25 fs. After the main pulse passes the array, it leaves behind an excited quasi-station-

ary mode which looses its energy by radiating an almost monochromatic wave. By symmetry, the same las-
ing effect is registered in the reflection direction by a detector placed in front of the layer (not shown here).

The lasing effect of the trapped mode appears as exponentially damped oscillations coming after the main

signal. An exponential decay due to a finite lifetime of the quasi-stationary state is clearly seen. A 100%

reflection at the resonant frequency can be understood from the fact that the field emitted by the trapped

mode in the transmission direction and the corresponding frequency component of the initially transmitted

pulse have an opposite phase, thus, compensating each other. The solid-blue and dashed-red curves corre-

spond, respectively, to e = 2 and e = 4. The radiation coming from the narrow resonance (the blue curve)

has a lower amplitude and a much longer duration. The lifetime of the trapped mode in this case is in
the picosecond range, i.e., a thousand times longer than the initial pulse duration. Note that the more nar-

row the resonance the less energy gets trapped from the initial pulse. This explains the amplitude difference

of the blue and red curves. Finally, the concept of trapped modes localized on successive layers and inter-

acting with each other provides a theoretical framework for light propagation in layered structures such as

photonic crystal slabs [39].

6.2. Metal gratings and grooves

Metal gratings and grooves have been extensively studied in micro-wave and optical domains [35,36].

The purpose of this section is to show that the Lanczos-split propagation scheme (Section 4.1) can success-

fully be applied to metals described by the Drude model. The Hamiltonian has the form (3.3). For the sake

of comparison with published results [35], the attenuation and the plasma frequency are taken to be:

xp = 9 eV and g = 0.1 eV. The grating geometry is sketched in the lower right corner of Fig. 5. The grating

period Dg = 1.75 lm, the thickness (along the z-axis) h = 0.8 lm, and the grating width a = 0.3 lm. The
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Fig. 4. Electric field measured by a detector placed behind the periodic layer of dielectric cylinders. Only the field corresponding to the

zero-order transmitted wave propagating along the z-axis is represented. It is obtained by the Fourier analysis of the x-coordinate

dependence of the field at the detector position. The signal is shown as a function of time measured in femtoseconds. The solid-blue and

dashed-red curves correspond, respectively, to the array of cylinders with dielectric constants e = 2 and e = 4. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Calculated zero-order reflection and transmission coefficients for metallic gratings and grooves described in the text. Results are

presented as a function of the wavelength of the incident radiation measured in units of the period Dg. The inset in the lower right

corner of the figure gives a schematic view on the grating geometry. The black line shows the reflection coefficient for metallic grooves.

Blue and dashed-red line shows the reflection (transmission) coefficient for metallic gratings. The sum of the reflection and transmission

coefficients for metallic gratings is shown as the dashed-dotted green curve. Its deviation from 1 represents the loss of electromagnetic

energy because of the absorption in metal. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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corresponding grooves are obtained by attaching a solid metal plate on one side of the gratings so that no

transmission is possible. The polarization of the incident wave packet is such that the electric field vector is

oriented along the x-axis, i.e., perpendicular to the gratings (the so-called TM polarization). The difference

with the non-dispersive case discussed above is the presence of attenuation. The trapped mode looses its

energy due to imperfect conductivity of the metal. This leads to broadening of the resonance.
In Fig. 5, the dashed-red and solid-blue curves represent the transmission and reflection coefficients,

respectively, as functions of the wavelength expressed in units of the grating period Dg. The resonance is

again associated with the existence of a trapped stationary wave in the grating. The transmittance does

not reach 100% due to a dissipative loss of energy in a Drude metal. While for a lossless medium the

sum of the reflection and transmission coefficients must be one, this is not the case for the Drude metal

(the dashed-dotted green curve in Fig. 5). The maximal loss of energy corresponds to the resonant wave-

length. It is easily understood because the trapped mode remains in contact with the metal much longer

than the main pulse, and, therefore, can dissipate more energy through exciting surface electrical currents
in metal. The black curve in Fig. 5 shows the reflectance of the grooves. Since the light cannot be transmit-

ted through the grooves, a resonance structure in the reflection coefficient is directly related to an enhanced

energy loss at the wavelength of the trapped mode. Note that, as compared to the metal gratings, the res-

onance is broadened and shifted to the lower frequencies (larger wavelength). The results obtained here are

in a full agreement with previous theoretical and numerical analysis [35,36].

6.3. Ionic crystal gratings

The Lanczos–Arnoldi algorithm (Section 4.2) has been applied to simulate the scattering of broad-band

electromagnetic (laser) pulses on a grating structure consisting of circular parallel ionic crystal cylinders

periodically arranged in vacuum. The Hamiltonian has the form (3.6). Our primary interest is to study

the effect of trapped modes (guided wave resonances) and polaritonic excitations on the transmission
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and reflection properties of the grating in the infra-red range. The dielectric function of the ionic crystal

material is approximated by the single oscillator model (3.4). Following the work [21], we chose the param-

eters representative for the beryllium oxide: e1 = 2.99, e0 = 6.6, xT = 87.0 meV, and the damping

g = 11.51 meV. The packing density, R/Dg = 0.1, has been kept fixed in simulations. The initial Gaussian

wave packet is linearly polarized with the electric field oriented along the y-axis, i.e., parallel to the cylinders
(the so-called TE polarization).
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Fig. 6. Calculated zero-order reflection (red curves) and transmission (blue curves) coefficients for the ionic crystal grating described in

the text. The results are presented as a function of the incident radiation wavelength measured in units of the grating period Dg.

Different panels of the figure correspond to different values of the grating period as compared to the resonance wavelength, DT = 2pc/
xT, for the polaritonic excitation of the material. The dashed and solid-black curves represent the reflection coefficient calculated for

gratings made of a lossless, non-dispersive dielectric characterized by e = e1 and e = e0, respectively. The sum of the reflection and

transmission coefficients is shown as the dashed-dotted green curve. Its deviation from 1 represents the electromagnetic energy loss

because of attenuation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Two types of resonances are expected in the infra-red range for the gratings studied here. Structure res-

onances are characteristic for periodic dielectric gratings. They are associated with the existence of guided

wave modes [20]. As demonstrated in the above example of non-dispersive dielectric grating (Section 6.1),

in the absence of losses, structure resonances lead to 100% reflection within a narrow frequency interval(s)

for wavelengths k � Dg. The second type of resonances arise because of polaritonic excitations for wave-
lengths k � DT = 2pc/xT. Calculations have been done for different values of Dg so that the polaritonic exci-

tation can be tuned throughout the wavelength range of interest (k/Dg P 1) by changing the ratio DT/Dg.

In Fig. 6, we show the results obtained for the transmission (blue curves) and reflection (red curves) coef-

ficients for the beryllium oxide gratings characterized by the period Dg such that DT/Dg = 0.5, 2.5, and 4, as

indicated in the figure. The results are presented as a function of the radiation wavelength measured in units

of the grating period. Note that a logarithmic scale is used for the horizontal axis in order to improve the

resolution at small wavelengths. Consider first the following two limiting cases. According to (3.4), for

short wavelengths, k	 DT (Dg 	 DT), the medium behaves as a dielectric with e � e1. In the long wave-
length limit k � DT (Dg � DT), the medium responds as a dielectric material characterized by e � e0. In
Fig. 6, the dashed and solid black curves represent the reflection coefficient of the grating made of lossless,

non-dispersive dielectric cylinders with e = e1 and e = e0, respectively. In full agreement with results of Sec-

tion 6.1 (Fig. 3), the reflection coefficient in these two cases reaches 1 within a narrow frequency range for

k � Dg. This resonant pattern is explained by the existence of guided wave resonances. The width of the
Fig. 7. Zero-order transmission coefficient for the ionic crystal grating described in the text as a function of the incident radiation

wavelength and the grating period. The horizontal axis represents the ratio DT/Dg of the resonance wavelength for the polaritonic

excitation of the material DT = 2pc/xT and the grating period Dg. The vertical axis represents the incident radiation wavelength k
measured in units of Dg. Color codes used for the plot are shown in the inset. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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resonances is determined by the lifetime of the corresponding quasi-stationary trapped mode, which is a

standing wave along the x-axis and is excited by the incoming wave. The width increases with e, while
the resonant wavelength gets redshifted, which explains the difference between the dashed and solid black

curves (e0 > e1).

Now we turn to a discussion of the effects due to dispersive properties of the ionic crystal material. For
DT/Dg = 0.5, the resonant excitation of polaritons is impossible within the range of wavelengths of interest,

and the dielectric constant is close to e0. The result for the reflection coefficient in this case is similar to the

data shown by the black solid curve. However, there is an essential difference as compared to the case of a

lossless, non-dispersive dielectric grating. Indeed, the sum of the reflection and transmission coefficients (the

dashed-dotted green curve) is not unity for the beryllium oxide model because of the damping. The same as

in the case of the metal gratings and grooves (Fig. 5), the maximal loss of energy arises at the resonant

wavelength.

For DT/Dg = 2.5, two resonances emerge leading to the enhanced reflection within the corresponding fre-
quency ranges. The one at k/Dg � 2.5, i.e., k � DT, is associated with polaritonic excitations of the ionic

crystal. The resonance at k � Dg is a structure resonance. As follows from (3.5), the dielectric constant

in this case approaches e1 for small wavelengths k � Dg. Then the width and position of the structure res-

onance are close to the data given by the dashed black curve. The imaginary part of the dielectric function is
Fig. 8. Zero-order reflection coefficient for the ionic crystal grating described in the text as a function of the incident radiation

wavelength and the grating period. The horizontal axis represents the ratio DT/Dg of the resonance wavelength for the polaritonic

excitation of the material DT = 2pc/xT and the grating period Dg. The vertical axis represents the incident radiation wavelength k
measured in units of Dg. Color codes used for the plot are shown in the inset. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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large enough throughout the entire wavelength range to produce a substantial energy loss at both of the

resonances.

Finally, for DT/Dg = 4 the polaritonic excitation appears at k � 4Dg and the two resonances are well sep-

arated. The structure resonance at k � Dg closely matches the result for a lossless, non-dispersive dielectric

grating characterized by e = e1. Observe that the reflection coefficient is close to 1 in this case and the
energy loss is small because the imaginary part of e(x) is small far from x = xT.

Figs. 7 and 8 show, respectively, the transmission and reflection coefficients of the grating as functions of

the incident radiation wavelength and the grating period Dg. The polariton resonance wavelength DT = 2pc/
xT and the packing density R/Dg are kept fixed. The results for the two limiting cases in which e = e0 and
e = e1 are represented by the left-most and right-most colored columns, respectively. The resonance pattern

of the system is clearly visible, and, in particular, the transformation of the structure resonance at e = e0 into
the polaritonic one. Thus, by increasing the ratio DT/Dg, the ‘‘broad’’ structure resonance associated with
0.0
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Fig. 9. Calculated zero-order reflection (red curves) and transmission (dashed-blue curves) coefficients for the ionic crystal grating. The

sum of the reflection and transmission coefficients is shown as the dashed-dotted green curve. The geometry of the grating structure is

set by DT/Dg = 2.5. The upper panel of the figure corresponds to the attenuation g = 11.51 meV. The lower panel of the figure

corresponds to the attenuation reduced by a factor of 20: g ! g/20. The vertical black line defines the resonant wavelength

k = DT = 2pc/xT. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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e = e0 is turned into the polaritonic resonance and follows the diagonal of the plot (k/Dg = DT/Dg). At the

same time, starting approximately with DT/Dg = 2, the ‘‘narrow’’ structure resonance associated with e = e1
emerges and fully develops for DT/Dg = 4.

Finally, we would like to show the sensitivity of the results to the attenuation in the present system. In

Fig. 9, the transmission and reflection coefficients are presented for two different choices of the attenuation
g in (3.6). The geometry of the grating structure is set by DT/Dg = 2.5. The upper panel of the figure cor-

responds to g = 11.51 meV as used in the calculations above. The lower panel of the figure corresponds to

the attenuation reduced by the factor of 20: g ! g/20. Overall features are qualitatively the same in both

cases. Thus, both the structure resonance at k � Dg and polaritonic resonance at k � 2.5Dg are present,

accompanied by the reduced transmission and enhanced reflection. As the wavelength increases from the

structure resonance, the reflectivity of the grating drops to zero. Its subsequent onset for k > 1.683Dg is

linked with the metallic-type behavior of the ionic crystal (e becomes negative). The characteristic frequency

for ‘‘metallization’’ can be deduced from the Lyddane–Sachs–Teller relation xL ¼ xT

ffiffiffiffiffiffiffiffiffiffiffiffi
e0=e1

p
, leading to

kL = 1.683Dg for kT = 2.5Dg. Despite these common features, the reduction of the attenuation leads to

essential changes. In contrast to the upper panel of the figure, for g ! g/20 the transmission coefficient

reaches nearly 0 at both the resonances, and the reflection coefficient is close to 1. Moreover, new structures

appear in the polaritonic resonance for k = DT, i.e., as e changes from large negative to large positive values.

These structures are completely washed out for the medium with large damping. This result indicates the

importance of accurate modeling of losses in polaritonic media in order to make reliable predictions of

transmission and reflection properties of grating structures and photonic crystals.
7. Conclusions

It has been demonstrated that the Lanczos algorithm can be used to develop highly efficient, accurate,

and unconditionally stable propagation schemes to simulate scattering of broad-band electromagnetic

pulses in passive media. The accuracy and efficiency of the algorithm have been illustrated with an example

of the electromagnetic wave propagation in vacuum. At the same computational costs, a significant reduc-

tion of phase and amplitude errors has been observed in the Lanczos propagation method as compared to
the second-order finite-difference (leapfrog) scheme.

As an example of possible applications, the Lanczos propagation method has been applied to study res-

onant transmission and reflection of various periodic nanostructures: Arrays of periodically placed parallel

cylinders made of non-dispersive dielectric materials as well as ionic crystal materials, and metallic gratings

and grooves. The time-domain study clearly demonstrates the role played by quasi-stationary (trapped)

electromagnetic waves supported by the corresponding periodic structure in the extraordinary transmission

(reflection) properties of the grating. The results for metallic gratings and grooves coincide with those ob-

tained earlier by means of other numerical algorithms. In the case of ionic crystal gratings, we have shown
the significance of both structure (or guided wave) resonances and polaritonic excitations for the transmis-

sion and reflection properties of grating structures. The results are also shown to be sensitive to the atten-

uation of polaritonic media.

In summary, we have developed an unconditionally stable (time-domain) algorithm for initial-value

problems in the electrodynamics of inhomogeneous, dispersive, and absorptive media. The method is based

on three essential ingredients: (i) the Hamiltonian formalism in electrodynamics of passive media, (ii) the

Lanczos propagation scheme, modified to account for attenuation, and (iii) the Fourier pseudospectral

method on non-uniform grids induced by change of variables to enhance the sampling efficiency in the
vicinity of sharp inhomogeneities of the medium. In addition to unconditional stability, the algorithm al-

lows for a dynamical accuracy control, meaning that the two propagation parameters, the dimension of the

Krylov space and the time step, may automatically be adjusted to minimize computational costs in due
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course of simulations, while still controlling error. The method is applicable to various electromagnetic sys-

tems (no restrictions on the Hamiltonian). It is important to emphasize that all these virtues are hardly

available in other unconditionally stable algorithms in numerical electrodynamics of passive media.
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